On Multisymplecticity of Partitioned Runge-Kutta Methods
نویسندگان
چکیده
Previously, it has been shown that discretising a multi-Hamiltonian PDE in space and time with partitioned Runge–Kutta methods gives rise to a system of equations that formally satisfy a discrete multisymplectic conservation law. However, these studies use the same partitioning of the variables into two partitions in both space and time. This gives rise to a large number of cases to be considered, each with its own set of conditions to be satisfied. We present here a much simpler set of conditions, covering all of these cases, where the variables are partitioned independently in space and time into an arbitrary number of partitions. In general, it is not known when such a discretisation of a multi-Hamiltonian PDE will give rise to a well defined numerical integrator. However, a numerical integrator that is explicit will typically be well defined. In this paper, we give sufficient conditions on a multi-Hamiltonian PDE for a Lobatto IIIA–IIIB discretisation in space to give rise to explicit ODEs and an algorithm for constructing these ODEs.
منابع مشابه
On the multisymplecticity of partitioned Runge-Kutta and splitting methods
Although Runge–Kutta and partitioned Runge–Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on t...
متن کاملOn multisymplecticity of partitioned Runge–Kutta and splitting methods
Although Runge–Kutta and partitioned Runge–Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on t...
متن کاملPartitioned Runge-Kutta Methods for Semi-explicit Differential-Algebraic Systems of Index 2
A general class of one-step methods for index 2 differential-algebraic systems in Hessenberg form is studied. This family of methods, which we call partitioned Runge-Kutta methods, includes all one-step methods of Runge-Kutta type proposed in the literature for integrating such DAE systems, including the more recently proposed classes of half-explicit methods. A new family of super-convergent p...
متن کاملUniversity of Cambridge Numerical Analysis Reports Practical Symplectic Partitioned Runge{kutta and Runge{kutta{nystrr Om Methods Practical Symplectic Partitioned Runge{kutta and Runge{kutta{nystrr Om Methods
We present new symmetric fourth and sixth-order symplectic Partitioned Runge{ Kutta and Runge{Kutta{Nystrr om methods. We studied compositions using several extra stages, optimising the eeciency. An eeective error, E f , is deened and an extensive search is carried out using the extra parameters. The new methods have smaller values of E f than other methods found in the literature. When applied...
متن کاملPartitioned Runge-kutta Methods for Separable Hamiltonian Problems
Separable Hamiltonian systems of differential equations have the form dp/dt = -dH/dq, dq/dt = dH/dp, with a Hamiltonian function H that satisfies H = T(p) + K(q) (T and V are respectively the kinetic and potential energies). We study the integration of these systems by means of partitioned Runge-Kutta methods, i.e., by means of methods where different Runge-Kutta tableaux are used for the p and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008